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The theory of Cowley & Pogany (Acta Cryst. (1968) A24,1 09) is used for the numerical calculation 
of thermal diffuse electron scattering from thin monatomic crystals, along the line of a set of systematic 
reflexions. Dynamical interactions of 15 Bragg and 25 diffuse beams are considered for up to 183 A 
of gold (200) systematics, treating the range of coherence of the interaction as a parameter of calcula- 
tion. A one-phonon Debye model is used. It is found that thermal diffuse scattering will not produce 
strong thickness fringe contrast, but will yield Kikuchi bands and lines, with little dependence on the 
range of coherent interaction. The unindexed Kikuchi line at the centre of the bands is predicted. Ther- 
mal scattering tends to increase in the region of strong Bragg beams for tilted crystals. Compared 
to that predicted kinematically, dynamical thermal scattering is greater for thin crystals near principal 
orientations, but will in general be less for highly tilted and particularly for thick crystals; it is more 
spread out in the diffraction pattern, and far stronger in the first Brillouin zone. There is an indication 
that thermal streak patterns from thin crystals should be stronger than expected kinematically. 

Introduction 

The kinematic theory cannot predict the intensities of 
Bragg beams with any accuracy in electron diffraction, 
because of their strong coupling. This is equally true 
for diffuse scattering, for even though it is normally 
weaker, it is generated from Bragg beams, and inter- 
acts (with itself) just as strongly. Thus, in order to 
study the contrast expected in imaging thermal back- 
ground in electron microscopy, or the structure in the 
diffraction pattern, dynamical interaction of diffuse 
waves must be considered. 

Theories treating thermal diffuse scattering (TDS) 
have been developed in varying degrees of approxima- 
tion. Hall & Hirsch (1965) treated the Bragg beams 
as Bloch waves, by the two beam theory, and the TDS 
as plane waves. This approach was useful in explaining 
anomalous absorption, but could not give the detailed 
distribution of TDS. The work was extended from an 
Einstein model to a one-phonon and approximate 
many-phonon Debye model by Hall (1965). Yoshioka 
& Kainuma (1962) used the fundamental equations 
for dynamical diffuse scattering developed by Yoshioka 
(1957) to study thermal absorption from elastic waves, 
again ignoring the interaction of diffuse waves when 
considering specific eases. Alternative theories, with 
the use of a weak beam approach or time-independent 
perturbation methods, have been formulated by several 
workers (Kainuma & Yoshioka, 1966; Fukuhara, 
1963; Kainuma, 1965). 

Takagi (1958a, b) included dynamical interaction of 
diffuse waves, and in the case of two waves in thick 
crystals showed that TDS can form Kikuchi patterns. 
The work of Fujimoto & Kainuma (1963) extended 
this to thin crystals. Gjonnes (1966) considered diffuse 
waves as N-beam dynamic, assuming incoherent diffuse 
scattering from each region of crystal. He achieved a 

qualitative description of the profiles of Kikuchi lines 
and bands, but was limited quantitatively by omitting 
interference between diffuse waves produced at dif- 
ferent depths in the crystal. O'Conner (1967) has 
treated TDS for X-rays and neutrons on a two-beam 
dynamical theory. It is the purpose of the present paper 
to discuss the intensity of TDS along a systematic line, 
when no non-systematic Bragg beams are appreciably 
excited, taking account of the effects of N-beam inter- 
action and of partial coherence. To this end, numerical 
calculations have been performed based on the theory 
of Cowley & Pogany (1968). 

Range of coherence of diffuse scattering processes 

By the time an electron microscope beam reaches the 
specimen the wave packet of one electron has spread 
over a region large in dimensions compared with the 
crystal thickness. Taking the probability amplitude of 
finding the electron at any point in the crystal at a 
given time as constant is therefore a good approxima- 
tion; elastic scattering of this wave packet can then 
only be localized within the crystal, so it is coherent. 
Similarly, when the scattering is inelastic, wave am- 
plitudes, rather than intensities, should be added over 
the range to which the interaction can be localized. 

The excitation of a collective vibration in the con- 
duction electrons (a plasmon) is coherent typically over 
several hundred /~ngstr/Sms. This is seen most easily 
by considering values of the velocity and relaxation 
time for plasmons. Experimental measurements by 
several workers (see Ehrenreich & Philipp, 1962) have 
confirmed that plasmon path-lengths are of this order. 
Coupled with the small energy and momentum trans- 
fers involved, this long coherence-length accounts for 
the similarity in the image produced from plasmon 
scattering and from Bragg beams (Howie, 1963). 
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For the creation or annihilation of a phonon, the 
range of coherent interaction between diffuse waves is 
the length of the phonon in the incident beam direc- 
tion. Neutron diffraction line broadening experiments 
suggest that this can be shorter than one wavelength 
for short wavelength optical phonons above the Debye 
temperature (Brockhouse, 1964). For long wavelength 
acoustical phonons, it will extend over far greater dis- 
tances. The present work treats the range of correlation 
as a parameter of calculation, to determine its impor- 
tance for dynamical TDS. 

Theory 

Since we will calculate TDS for the systematics case 
only, the crystal structure in the y direction can be sup- 
pressed. If ~0t(x) is the potential of an atom at x~, 
averaged over y and projected in the z direction over 
a crystal slice of thickness Az, then the scattering func- 
tion q(x,z, t)  for this slice can be written, following 
Cowley & Pogany (1968), as 

q(x,z , t )= 1 + exp { Z" Z' iaq~ot(X),J(x-xO,6[x-na 
n l 

- A n z ( z , t ) ] } - l .  (1) 

Here, tr = zc/20 W0, ;to and W0 being the wavelength and 
accelerating voltage for the incident electron. Ant(z, t) 
is a continuous function whose value at the position 
of an atom describes its displacement from equilibrium. 
Equation (1) assumes a rigid ion model for the vibrat- 
ing atoms. 

If there is no overlap of the ~00t(x) for different atoms, 
(1) can be written as 

q(x,z , t )= 1 + L" Z'[ exp {ia~oot(X-Xt)}- 1].fi[x-na 
n l 

-Ant(z , t )] .  (1') 

Fourier transforming (1') with respect to x, 

F(u,z, t)=f(u)+ S S Fit(u) exp (2rciux 0 
n l 

x exp (2z~iuna) exp [2~ziuAnz(z,t)], (2) 
where 

Fa(u)=Sz'[ exp {ia~oot)X)}-1]. 

Equation (2) is the same as in kinematic theory for 
a single unit-cell layer, apart from the replacement of 
kinematic scattering factors by F~t(u). Therefore, fol- 
lowing kinematic theory [see Cochran (1963)], Bragg 
beams are given by 

F(u) = ~ S Fit(u) exp [-B:(u/2) z] exp (2niuxt) 
h 1 

x f i(u- h/a) 

= ~ Z F~t(u ) exp (2z~iuxz). 6 (u-h /a) ,  
h 1 

(3) 

where the Bz's are the usual Debye-Waller factors. 
In the case of one atom per fundamental cell, for 

which the question of the overlap of the ~00t(x) is ir- 

relevant, An(z, t) can be written as 

An(z, t )= S Ajsx(t ) cos [kjxna + kjzz-cojst + ~js] . (4) 
j s  

A~sx(t) is the x component of the vibrational amplitude 
of the mode s with wave vector components kjx = 2n/2jx 
and kjz=2n/2jz. The phonons have energy hog, s and 
a phase factor e~s, taken as random. In this monatomic 
case, summations over l and the term exp (2niuxz) are 
dropped, yielding for Bragg beams the simple expres- 
sion 

F(u)= X F~ (u)fi(u-h/a) . (3') 
h 

By expanding the last exponential in (2) as a product 
of a series of Bessel functions, Cowley & Pogany 
showed that (3') is accurate to terms of fourth order 
in the small quantities (uAjsz). Their expansion of (2) 
into terms corresponding to Bragg reflexion and to 
single and multiple-phonon single-scattering processes 
yielded, for the single phonon term, the approximate 
expression 

F~(u,z,t)=F~(u) ~r + inuAjsx(t) exp [ + i(c~js 
js 

+ kj~z-ogjst)] ,~ J (u-h /a  + 1/2j~,). (5) 
h 

Multiple diffuse scattering is absent from this approx- 
imation; it will be negligible within the crystal thick- 
nesses considered in this paper. 

The time dependence of Ajsz(t) is the result of sta- 
tistical fluctuation of the number of phonons in the 
mode (is), and possibly of a slow increase resulting 
from heating of the crystal. Particularly since they are 
averaged in an experiment, both these small effects are 
ignored, Ajsx(t) being replaced by A(r.m.s.) its root- ~ajSX 

mean-square value. Since ogjs<O)e~, the phase term 
exp (+icojst) varies little during the interaction, and 
so is eliminated when finding intensities. The random 
phases c~js mean that the observed intensity is a sum 
only of incoherent contributions from different pho- 
nons, since the time average of cross terms will be zero. 

The + signs in (5) are a result of taking a cosine 
form for vibrations, as in (4). They may be treated by 
doubling the final intensity predicted by either one. 
Thus the one-phonon diffuse scattering amplitude at 
a depth z in the crystal may be written, dropping the 
plus sign, as 

F f ( u , z ) =  Y, Ff(u,z)js exp (-io~ls ) , 
]s 

where 

Ff(u,Z)js = -inuFra(u)A}~p "s') 
x exp (-ikfzz) ~r f i (u -h /a -1 /2 jz ) .  

h 
(6) 

A quantum-mechanical treatment of dynamical ther- 
mal electron scattering would yield the same final in- 
tensities as the classical theory above, within minor 
approximations. This is readily seen by comparing (2) 
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with the work of Laval (1958) dealing with kinematic 
X-ray phonon scattering. 

Method  of  calculat ion 

(1) Bragg beams 
Bragg beams are calculated by the iterative 'slice' 

approach of Goodman & Moodie (1965), as described 
by Cowley & Pogany (1968). This gives the elastic 
waves F~v(h) at the Nth layer of crystal as 

F~v(h)= Z'FN_~(h0Fr(h-hl)T(h-hl)P(hl , f l ) ,  (7) 
hi 

where the phase term T(h) resulting from a crystal tilt 
fl in the xz plane is 

T(h)= exp [.-ZrdAztanfla ( N -  1)h] 

and that due to propagation of the waves between 
slices Az apart, P(h,fl), is 

% Absorption 
--10 

183"15 A 

Thickness 
Fig. 1. Percentage absorption from Bragg beams against 

thickness, resulting from TDS for (200) gold systematics. 
(a) Zero tilt, (b) t =  first Bragg angle. 

Incident Beam 

Diffuse Spots [ p/ 
+ 

IV". .-'BI I 
2 "'" 1 0 1 

Bragg Spots 
Fig.2. Equivalent diffuse position in the diffraction pattern. 

I Incident Beam Ewald Sphere [ 

2 1 0 l P i  2 

Fig. 3. Scattering power of wave vector (k~=, k~z). - - -  Spread of 
diffuse scattering power. 

-- i~)tAzh 2 ] 
P(h,fl)= exp aZ cosU t -  . 

From the derivation of (3') it is clear that the use 
of a large slice thickness forces several fundamental 
cells to vibrate in phase, and so produces an over- 
estimate of thermal absorption. Thus in calculating 
Bragg beams with absorption on the slice approach by 
the use of (7), single atom layers must be used. Fig. 1 
shows the percentage of the incident beam lost from 
Bragg beams through thermal absorption for two tilts 
of (200) gold systematics, taking B= 0.50 A z. 

(2) One-phonon diffuse beams 
The following describes the method employed to 

account for the interaction, on the systematic line, of 
diffuse beams caused by a single acoustical phonon. 
This allows the range of coherence to be varied arbi- 
trarily. 

The diffuse amplitude Ff(u,@8 corresponding to one 
vibrational mode is given by (6). For a set of Bragg 
beams FN-I(h) entering the Nth slice of crystal, the 
diffuse scattering produced by the mode (is) is 

Fg(h +p~,z~r)js= S, Flv_a(hOFf(h-h a +pj,NAz)js 
hi 

x T(h-hl+pj)P(hl,fl),  (8) 
where 

pj=a/2iz. . 

Equation (8) implicitly ignores multiple diffuse scat- 
tering. Multiple-phonon single scattering processes are 
omitted by the use of (6) for F~. 

The Bragg interaction, at later layers, of the diffuse 
waves produced at a depth NoAz is given by the itera- 
tion 

Fg(h +pj, NoAz)js= .S F~_~(h +pj, 
hi 

NoAz)jsFr(h-hOT(h-hx)P(hx +pj,fl-Afl) (9) 

where 

Equation (9) is first applied at layer N=N0+ 1, and 
includes absorption from one-phonon diffuse waves. 
It can be shown that the choice of terms P and T in 
(8) and (9) expresses the phases of diffuse waves relative 
to the central Bragg beam, as is the case for the Bragg 
beams. This allows additional TDS to be produced at 
layer No with the correct relative phase. Choosing a 
particular 2ix, appropriate to a phonon propagating 
in the x - z  plane, Bragg interactions of diffuse waves 
occur between specific diffuse points on the systematic 
line, themselves separated by reciprocal lattice vectors 
(Fig.Z). 

In the calculation, Bragg beams are first calculated 
and stored for each layer of the crystal. Then, by the 
use of (8) and (9), the amplitudes and phases of diffuse 
waves at the diffusely scattering slice and each later 
slice of the crystal, up to the maximum desired thick- 
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ness, are calculated and stored. This is done consider- 
ing each slice in turn as the source of thermal scattering. 
It is convenient to omit the term a(,.m.s.) exp ( -  iklzz), x l SX  

then include it at the end of the crystal, multiplying 
the diffuse amplitudes by the term appropriate to that 
depth of crystal at which they were produced. This is 
valid since this term does not depend on the indices 
h or hi, and so will not alter the dynamical interactions. 
Since uF~(u) varies little, except ill the first Brillouin 
zone, for modes having the same kjz but different k~z, 
the same set of diffuse waves can be used for all pho- 
nons with the same kjx. 

Taking the range of coherent interaction as being 
LAz, then for a particular mode, diffusely scattered 
amplitudes at the end of the crystal produced in the 
first L slices are added (with the term aCr.m.s.) exp X X j s x  

(-ikjzz) included), then added in intensity to those 
produced at the end of the crystal ill the next L slices, 
and so on. A linear average is taken over the positions 
of coherent interaction. In this way, the intensity pro- 
duced by a given phonon can be found as a function 
of its length in the incident beam direction. 

An orthogonal set of polarization vectors is assumed 
for the vibrations, and a Debye model taken for the 
dispersion relation. Under these conditions, ~(r.,-.s.) is 2 ~ JsX  

given by ' { h } ( h v )  
Aj=Z,  Ajs~= 2N322A z ~-T~" 2j coth -2~[T2j " 

(10) 
Here, N3 is the number of layers of fundamental cells 
in the z (or incident) direction, 0 the crystal density, 
K is Boltzman's constant, T the absolute temperature 
and v the sound velocity in the crystal. The additional 
factor of 2, resulting from the omission of the plus sign 
from (5) as mentioned previously, is included. Equa- 
tion (10) sums over the incoherent contributions from 
transverse and longitudinal modes. The result is the 
same as for a single mode in the kz direction, since 
TDS along this systematic line results only from the 
projected atomic vibration in this direction. 

For later reference, we note that the kinematic one- 
phonon diffuse amplitude from one fundamental cell 
layer and from the wave vector ks, under the same con- 
ditions, is given by 

D _ _  • ( r . m . s . )  T F~in(u ) - znA m uf o (u) 
where 

A'-'~jk-- 2vcN3 { +  2,}coth ( 2 K % ) "  ( l l )  

Here V is the volume of the fundamental unit cell, c is 
the spacing of single atom layers, and f~0(u) the kine- 
matic scattering length attenuated by the Debye- 
Waller factor. 

The use of (6), (10) and (11) gives TDS expressed as a 
scattering probability, so that an integration over the 
whole diffraction pattern would yield the fraction of 
electrons scattered by one-phonon processes from the 
particular crystal considered. 

- 002 

~ ~oo ~ 00( 1 O0 v 

Fig.4. The first Brillouin zone of  the f.c.c, lattice down the 
[200] direction in reciprocal space. Only contr ibut ions from 
wave vectors within the octagons are included. 

Intensity 
(a rbitra ry scale) 

1"1 

2"1 
0"1 

183"5A 
Thickness 

(a) 
Intensity 
(arbitrary scale) 

2"1 

1'1 

(1 y  o.1 
[183"5A 

Thickness 
(b) 

Fig. 5. Diffuse intensity plotted against thickness for zero tilt 
and the single mode  defined by pj =0.1 ,  k3z=0, in the posi- 
tions ( h + p j ) = 0 . 1 ,  1.1, 2-1. (a) Coherent  case and (b) co- 
herence length = 12.2A. For  these two graphs only, - A~ was 
taken as an arbitrary constant,  independent  of  thickness. 
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Calculations at this stage of development are not 
comparable to experiment, since contributions from 
different wave vectors are not resolved experimentally. 

Intensity 

_ _  4x10 2 2"1 

However, they show that the term exp ( - ik~zz) localizes 
the scattering power associated with a given wave vector, 
as shown in Fig. 3. Thus the thermal diffuse scattering 
power is envisaged as being composed of a set of dyna- 
mical shape functions centred on the allowed wave 
vectors, and smeared out by an amount which de- 
creases with increasing coherence length and/or crys- 
tal thickness. 

1"1 

(1"1) 

3'1 

Intensity 

4x10 2 

f ~  0'1 

1183.5A 
Thickness 

(a) 

2"1 

1"1 

3.1 

1183.5A 
Thickness 

(b) 

Fig.6. As for Fig.5, but including all modes with p!=0.1. 
(a) Coherent case and (b) coherence length= 12.2 A. 

(3) Coincident one-phonon contributions 
Experimentally, incoherent contributions to a set of 

diffuse positions separated by reciprocal lattice vectors, 
from modes having the same kjz but different klz, are 
not resolved, so it is necessary to sum in intensity over 
allowed kjz values for a given Ps. This is done by re- 
peating, for each kjz, the procedure outlined in the previ- 
ous sub-section dealing with Act.,-.,.) exp (-ikp.z).  ~XJSX 

The use of a set of normal modes to describe vibra- 
tions is strictly inconsistent with considering TDS as 
partially coherent, since both wave vectors and ener- 
gies of phonons shift or smear out as the relaxation 
time decreases. It can be shown that this inconsistent 
step causes calculated TDS to double in going from a 
coherent to a completely incoherent case, even on a pure- 
ly kinematic theory. This contradicts the well-known 
result that thermal absorption from Bragg beams is 
the same for an Einstein and for a Debye model. There- 
fore, it is necessary to renormalize the total intensity 
for partially coherent cases to equal that for the co- 
herent case (for which the normal modes are strictly ap- 
plicable), and to adjust each diffuse beam accordingly. 

Fig.4 shows the section of the first Brillouin zone 
for a face centred cubic crystal set down around each 
reciprocal lattice point in the [200] direction. Intensity 
contributions from wave vectors not included on this 
zero layer-line are omitted. Thus the present calcula- 
tions cannot be performed for cases of such low cohe- 
rence length that significant contributions to TDS on 
the systematic line would arise from these omitted 
wave vectors. The error introduced from this source 
in the cases considered is less than 10 per cent, and 
partially cancels when considering the dynamic factor 
as in the next section. 

Because of the form of (6), diffuse beams spread fur- 
ther out in the diffraction pattern than do Bragg beams; 
therefore more diffuse beams must be considered in the 
interaction. In practice, 15 Bragg and 25 diffuse beams 
are found to be adequate for gold (200) systematics. 
A layer thickness Az corresponding to three funda- 
mental cells was used in treating interactions of dif- 
fuse waves, since it was found to introduce all error 
of no more than 5-10 per cent for diffuse beams in the 
first few zones.* Unfortunately, the length of the cal- 
culations is such that it must be limited to quite thin 
crystals - about 200 .A, is an upper limit for gold. How- 
ever, this is sufficient for our present purposes, and in 
any case calculations dealing with thick crystals would 

* This was sometimes up to 15 per cent for the central zone. 
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have to treat multiple inelastic scattering processes 
(electronic as well as phonon excitation). 

Calculated results 

All calculations reported here are for gold (200) sys- 
tematics,for crystals no greater than 183 A thick, a tem- 
perature of 20°C and an incident electron energy of 
80 keV. Scattering factors calculated on the Dirac- 
Slater atomic model by Cromer & Waber (1965) were 
used to obtain atomic potentials. The difference be- 
tween these and the relativistic Hartree-Fock values 
(Doyle & Turner, 1968) is not important considering 
other approximations in the present work. 

(1) Thickness contrast from TDS 
Fig. 5(a) and (b) show variation of diffuse intensity 

with thickness for the single mode defined by pj = + 0.1 
and kjz = 0 (as illustrated in Fig. 2), for assumed cohe- 
rence lengths of i~finity and 12.2/~ respectively.* These 
are for the untilted case, i. e. fl = 0. In the coherent case, 
turning points follow fairly closely those for the neigh- 
bouring Bragg beams, except for the central Brillouin 
zone. The different behaviour in this region may be a 
result of the weak direct contribution from the central 
beam. There is a monotonic increase with thickness 
for the low coherence case, as might be expected since 
the assumed coherence length is much less than typical 
Bragg beam extinction lengths for this graph. 

As discussed previously in this paper, the diffuse in- 
tensity observed experimentally is a sum of incoherent 
contributions from wave vectors with different k~z values. 
Figs. 6(a) and (b) correspond to Figs. 5(a) and (b), ex- 
cept that contributions from all modes are included. 
In both coherent and low coherence cases, little fringe- 
type variation is apparent, though it may be enhanced 
slightly by including absorption from electronic pro- 
cesses or by photographic techniques. This behaviour 
occurs for all tilts for the systematics case. It is consis- 
tent with the observations of Cundy, Metherall & 
Whelan (1966) who sought contrast from phonon scat- 
tered electrons from AI, and suggested that the ob- 
served contrast may be attributable to surface layers 
on the specimen. 

The generally slower rate of increase of TDS at about 
110-120/~, apparent on Fig.6(a) and (b), occurs be- 
cause nearly all the elastic intensity is in the central 
beam at this thickness (the N-beam extinction length 
for the central beam in this case is 116 A). The corres- 
ponding lower rate of absorption from Bragg beams at 
this thickness can be seen on Fig. 1 (curve a).~ 

* To retain consistency with the definition of pj, the 200, 
400, . . .  reflexions are denoted by h= 1, 2 . . . .  on the graphs. 

t Note added in proof: A more accurate treatment of ther- 
mal absorption would not predict this effect. However, further 
calculations have shown that the weak contrast in Fig. 6(a) 
and (b) is retained when the elastic intensity is exactly con- 
served, so that the above discussion remains valid. The prosent 
treatment of absorption does not have an important effect on 
any other calculations reported here. 

(2) Variation of  intensity with coherence length 
It is often convenient to express results in terms of a 

dynamic factor D, defined as 

D ( L ) =  Idyn(L)/ /k in . (12) 

Here,/kin is computed for coherent TDS, and is readily 
found by the use of (11), and summing over contribu- 
tions from each mode as described in the dynamical 
case. In this way, effects resulting from partial cohe- 
rence and dynamical interaction can be separated from 
those attributable to other causes, such as the model 
taken for vibrations. 

7 

Crystal 
Thickness 

0"1 

3"1 
2"1 

1.1 

183.5A 

Coherence Length 
Fig.7. The dynamical factor, D, plotted against coherence 

length, LAz, for fl=0 and pj=0"l, for a crystal 183 A thick. 

Intensity 
4x10 2 

V, Y 
I I I~I 

000 200 400 600 800 
Diffraction Pattern 

Fig.8. Thermal diffuse scattering calculated across the dif- 
fraction pattern for 183 A and B=0, coherent case. 
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Fig. 7 shows D against L for fl = 0, p = 0.1 and a thick- 
ness of 183 A. The following points are noted: 

(a) With the possible exception of the case of very low 
coherence diffuse intensity is almost independent of L. 
This is also found for other crystal tilts. 

(b) Scattering in the first zone is far greater than that 
predicted kinematically. This is because normal pro- 
cesses are far less likely than Umklapp processes for 
phonon scattering, so that dynamical intensity in the 
first zone comes principally either directly from Bragg 
beams with h # 0, or through Bragg scattering of diffuse 
waves from other zones. Both these processes do not 
occur kinematically. This interpretation is borne out 
by noting that D for TDS in the first zone increases 
markedly with thickness, for any coherence length, a 
property not shared by TDS in other zones. 

(c) D is in general greater than one, indicating 
stronger dynamical TDS than kinematic for this crys- 

D 

i J- .I J_ l I I _ I I I I 

5 4 3 2 1 0 1 2 3 4 5 
Diffraction Pattern 

(a) 

D 
5 

! I ± i I ~ .r i i i I.. 
5 ~, 3 2 1 0 1 2 3 4 5 

Diffraction Pattern 
(b) 

D 
5 

J] t 
I I I 

3 2 i 0 1 2 3 

Diffraction Pattern 
(c) 

Fig. 9. The  dynamica l  factor ,  D, p lo t ted  across the diffract ion 
pattern for fl = 0. Arrows mark the limits of the Kikuchi band 
for 200 and 200 reflexions. (a) Coherent, thickness=92 A; 
(b) coherent, thickness=183A; (c) coherence length= 
18.4 A, thickness = 183 A. 

tal. This is at first surprising since the same absorption 
function on Bragg beams is used in both cases. How- 
ever, it is the difference between the kinematical and 
the effective dynamical shape functions surrounding 
each phonon wave vector which causes this effect. As 
crystal thickness increases, D will decrease, since, be- 
cause intensity is conserved in the dynamical case, 
there is progressively less intensity in Bragg beams to 
'feed' the diffuse scattering. 

The coherence length is not an experimentally vari- 
able parameter (except partially by varying tempera- 
ture), as are thickness, tilt and position in the diffuse 
background. For this reason, graphs with coherence as 
the independent variable are useful at this stage only 
for comprehension. 

(3) Structure in diffuse scattering 
It is well known that Kikuchi bands and lines in the 

background of diffraction patterns result from dyna- 
mical interaction of diffuse scattering. It has been sug- 
gested (Tonomura & Watanabe, 1967) that most in- 
tensity observed in these patterns is a result of scatter- 
ing by electronic excitation (largely plasmon for cer- 
tain substances). However, crystals which yield strong 
Kikuchi patterns are normally so thick that most elec- 
trons have suffered more than one inelastic scattering 
both thermal and electronic. Hence electrons scattered 
by phonons alone are not expected to contribute strong- 
ly to such Kikuchi patterns in terms of absolute inten- 
sity, as is found experimentally, but they may still 
possess the same structure on a smaller intensity scale. 

Graphs of intensity across the diffraction pattern 
show little other than poles around each Bragg beam, 
resulting from the Debye model taken for vibrations. 
Fig. 8 shows such a graph forf l= 0. (TDS is symmetrical 
about the central spot in this case.) Graphs of D prove 
more useful, as in Fig. 9. The Kikuchi band for 200 and 
200 reflexions is expected to be symmetrically placed 
about the origin, as shown. It is not apparent at 92 A 
[9(a)], but is becoming defined for 183/~ for both co- 
herent and low coherence cases [9(b) and (c)]. As the 
crystal is tilted, the structure in graphs of this type 
follows the various Kikuchi line positions. Fig. 10(a) 
and (b) are for a tilt equal to the first Bragg angle. 
However, it is not clear whether this suggestion of 
Kikuchi lines is dependent on coherence length. To 
investigate this, graphs of the type shown in Figs. 6 and 
7 (intensity versus thickness and D versus L) were cal- 
culated for various Kikuchi line positions. They showed 
no more structure than can be seen in Figs. 6 and 7. 
It therefore appears that TDS can form Kikuchi bands 
and lines, whether or not the coherence length for the 
interaction is long. This explains why the treatment of 
diffuse scattering as incoherent (Gjonnes, 1966) can give 
a qualitative description of the profiles of Kikuchi pat- 
terns in the case of TDS. 

The tendency for D to decrease sharply close to the 
central spot in the untilted case (Fig. 9) is a result of the 
symmetry of the interaction for this tilt, together with 
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the antisymmetry of the diffuse scattering function 
(uFr(u)). For the two-beam case (Fig. 10), TDS in the 
central zone is asymmetrical, being greater between the 
two strong Bragg beams. Experimentally, it is observed 
that the total diffuse scattering near these two beams is 
lower between them. However, Howie (1963) has 
shown that this effect is to be expected for plas- 
mon scattering from thick crystals, an essential point 
being that Umklapp processes do not occur for 
plasmons. On his argument, TDS provides a strong 
'inelastic interband' mechanism, and so would not pro- 
duce the effect observed for the total diffuse scattering 
(which is largely plasmon for many crystals, particu- 
larly near the centre of the diffraction pattern). There- 
fore the present result does not contradict experiment. 
For a large tilt such as 2.60zoo (Fig. 1 1), the effect con- 
tinues, D being in general large in the region of strongly 
excited Bragg beams. There is a marked increase from 
92 to 183 A [11 (a) and (b)], but again little difference in 
the case of low coherence [1 l(c)]. 

There is an indication in Figs. 10(a) and (b) of the for- 
mation of an unindexed defect Kikuchi line at the cen- 
tre of the bands for the systematics case. It is also ap- 
parent for other low tilts, but not for large tilts [e.g. 
l l(b)] for the thin crystals considered. Kainuma & 
Kogiso (1968)have also predicted this experimentally 
observed phenomenon for the approximation of 3 
Bragg and 3 diffuse beams of unspecified ori- 
gin. 

Thermal streak patterns have been observed in elec- 
tron diffraction from several substances [see Honjo, 
Kodera & Kitamura (1964)]. They are the result of large 
vibrational amplitudes for specific modes, and are not 
dependent for their appearance on dynamical effects. 
Therefore they have their counterpart in X-ray diffrac- 
tion, in the form of non-radial streaks. There is no 
streak through the central spot, so that the present 
calculations, being limited to the systematic line, can- 
not be directly applied to their study. However, D is 
in general greater than one for thin crystals with low tilt. 
This suggests that thermal streak patterns from acous- 
tical phonons in thin crystals may be stronger than 
expected kinematically, when observed near principal 
orientations. When they are the result of low frequency 
optical phonons (as in BaTiO3) the present calculations 
cannot be even qualitatively applied. 

Discussion 

The principal conclusions of the previous section may 
be summarized as the following : 

(a) TDS spreads out further in the diffraction pat- 
tern and is far stronger around the central spot, than is 
expected kinematically; 

(b) TDS is greater than predicted kinematically for 
thin crystals close to principal orientations, but in general 
is less for highly tilted or particularly for thick crystals; 

(c) thickness fringes from one-phonon diffuse scat- 
tering are expected to be weak, whether coherent or 

incoherent. This results from the averaging caused by 
summing over phonon wave vectors; 

(d) TDS can form Kikuchi bands and probably also 
Kikuchi lines, including the unindexed line at the centre 
of the bands, with little dependence on the range of co- 
herence and hence phonon path length; 

(e) dynamical interactions of diffuse waves may in- 
crease the intensity of thermal streak patterns from 
acoustical phonons in untilted thin crystals; 

(f)  when an inner reflexion is satisfied TDS between 
two strong beams tends to be greater than elsewhere. 
This remains true in the region of strong Bragg beams 
when several are strongly excited. 

In general, phonon path length, and therefore cohe- 
rence length, increases as thermal resistivity and ex- 
pansion coefficients decrease. Therefore, experiments 
to verify the present prediction of a small dependence 
of TDS on coherence length could perhaps be carried 
out by use of different crystals having a suitable range 
of these macroscopic parameters. 

The quantitative accuracy of the type of calculation 
reported here is difficult to assess. In the case of one 
atom per fundamental cell, for which ignoring the 
overlap of the projected potentials of different atoms 
is irrelevant, the principal approximations used are 
these: 

(a) Multiple phonon single scattering processes have 
been ignored. These will produce TDS further out in 
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Fig. 10. The dynamical factor, D, plotted across the diffraction 

pattern for fl=0200, and 183 A thickness, (a) coherent case 
and (b) coherence length=18.4 A. The arrow marks the 
position of the unindexed Kikuchi line. 



P. A. DOYLE 577 

I ± ± I z~ 

~._--. ~ / - - - . _ . .  
Tiltl i i i 

3 2 1 0 1 2 3 4 5 
Diffraction Pattern 

(a) 

.. __1 I. I J I I'~"'~1~--"1 
4 3 2 1 0 1 2 3 4 5 

Diffraction Pattern 
(b) 

D 

2 1 0 1 2 3 4 5 
Diffraction Pattern 

(c) 

Fig. 11. The dynamical factor, D, plotted across the diffraction 
pattern for ,8=2"60200, and 183 A thickness. (a) Coherent, 
thickness=92 A; (b) coherent, thickness=183 A; (c) co- 
herence length = 18.4 A, thickness = 183 A. 

the diffraction pattern than single-phonon scattering 
so that intensity in the first few zones may be mostly the 
result of single phonons. However, dynamical effects 
could well smear out electrons scattered by these pro- 
cesses to give appreciable contributions in the inner 
zones. This is probably the most serious approxima- 
tion. The omission of the contribution resulting from 
multiple diffuse scattering, and the absorption result- 
ing from electronic excitations, should not be impor- 
tant for the thin crystals considered. 

(b) The Debye model taken for vibrational ampli- 
tudes could result in an important error for short wave- 
length modes, but this error cancels out to first order in 
considering the dynamic factor. 

(c) Coherence length has been taken to be the same 
for all modes, whereas it should vary with wave vector 
and direction of the incident wave. The small depen- 

dence of the results on coherence length reduces the 
importance of this error. 

(d) The systematics approximation is important for 
the case of gold - a truly systematics case does not seem 
possible for this crystal*. It was chosen for the present 
work because of the short Bragg beam extinction dis- 
tances compared with those for a light element. 

Unfortunately, the elimination of these and other 
less important approximations from calculations by 
use of the methods described appears to be impracti- 
cably difficult. 

The author is indebted to Professor J .M.Cowley 
for his valuable suggestions and encouragement, and to 
Dr A. P. Pogany for many stimulating discussions. His 
thanks are also due to Dr  P.S.Turner for permission 
to build on his computer program dealing with Bragg 
beam calculations. This work was supported by a re- 
search grant from the Australian Atomic Energy Com- 
mission. 
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